

Nice to meet you

Based in Milan - Northern Italy - since 1926, Ravioli S.p.A. is a manufacturer of electric and electromechanical devices for industrial applications in construction, lifting, e-mobility, solar and wind power plants, agriculture, nautical industry, amusement parks, industrial material handling. With in-house R&D, design, production and assembling, whilst complying with the latest regulatory standards in force, Ravioli guarantees a deep care for quality and safety standards of its products, combined with user-friendly design, customer care and technical assistance as well as innovative and updated solutions for each product.

Ravioli trusts in knowledge and experience as a leap towards the future.

Highly customised solutions

The trusted synergy with the customer and the flexibility to provide both standard and bespoke products are key factors in finding the most suitable solution for you.

Different products, many solutions

Our complete range of products includes Rotary Limit Switches, Radio Remote Controls, DC Contactors, Slip Rings, Pendant Stations and Twin Connectors.

Applications

Rotary construction machinery

Roller Series - PM Series

Packaging, bottling and labelling lines

Roller Series - PR Series - PZG

Amusement parks

PM Series - PR Series - PZG

Agriculture

PM Series - EXD Atex

Water treatment plants

PR Series - PZG

Wrapping lines

Roller Series - PR Series - EXD Atex

Product Families

PRR Roller PRN Roller Plus

PMR Premium PMS PME Evolution

PR Series

PRE Smart PRS PRG

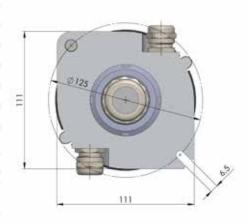
PZG

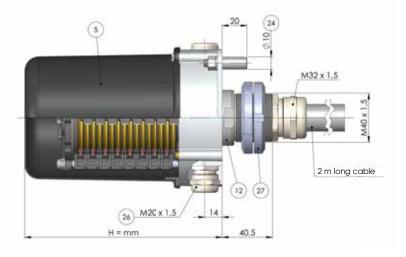
EXD Atex Ex

PRR Roller

Suitable for

With limited dimensions and high rotation speed, Ravioli's Roller slip ring is perfect when it comes to applications requiring reduced axial and radial dimensions.


The strong mechanical resistance and high protection degree are ensured by the aluminium bottom and cover of the Roller slip rings. IP65 protection and one or more fluidic passages and also angular sensors are optionally available.


This slip ring can be supplied with either copper-graphite or silver-graphite brushes for the transmission of signals, with different executions ranging from 6 to 24 rings 10A.

The Roller brushes are moreover easy to replace without need to remove the slip ring from the equipment.

- Reduced radial dimensions
- High rotation speed
- Easy match with fluidic joints
- Aluminium housing
- ⇒ High protection degree IP65
- Optional accessories available

Dimensions

Housing	in aluminium
Positioning	on vertical axis, with cover assembly on top
Protection degree	IP65
Operating temperature	-20°C ÷ +60°C
Max rotating speed	100 RPM
Standard connections	rings with 2m cable, brushes with numbered terminal board
Number of circuits	up to 24 connections
Nominal current	Ith 10A
Nominal voltage	400 Vac-dc
Test voltage	2 kV
Insulation resistant	$>$ 200 M Ω at 500 Vac-dc

Customisation

Cables (length / type)

Cables inlets (number / type / position)

Complete wiring I/O

Air passages (up to 5)

Rotary sensor / encoder

Mounting flanges

Flat bottom

Anti-condensation system

Fluidic joint

Combined solutions

Power

Signals

Data

Fluidic (air / oil)

Standard models

Only electrical passages			ssages
Code	nu	mber of circu	uits H = [mm]
GPRRAG	06	6x10A	135
GPRRA1	10	10x10A	135
GPRRA1	16	16x10A	160
GPRRA2	20	20x10A	200
GPRRA2	24	24x10A	200

Electrical	passages + 1	air passage
------------	--------------	-------------

Code	number of circuits	H = [mm]
GPRRA06K3F8	6x10A + 1x1/8"-10bar	160
GPRRA10K3F8	10x10A + 1x1/8"-10bar	160
GPRRA16K3F8	16x10A + 1x1/8"-10bar	200
GPRRA20K3F8	20x10A + 1x1/8"-10bar	200

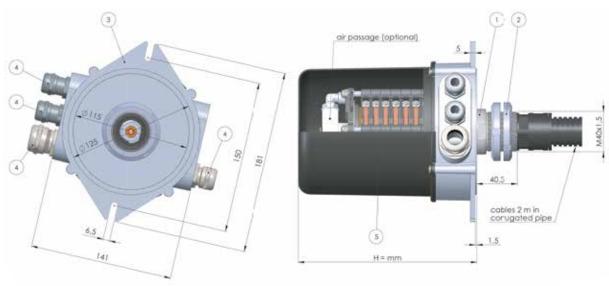
- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

PRN Roller Plus

Suitable for

This slip ring combines the technical features of the previous models Roller and Kombi-Roller into a cutting-edge evolution.

With high rotation speed, IP65 protection, high mechanic resistance aluminium cover and bottom, the Roller Plus ensures executions up to 36 rings reducing brushes wear.


Thanks to the new Roller Plus space saving, reduced weight, and high-performance standards, this solution is perfect in packaging lines requiring air inflow.

Supplied with cables and brush wiring, the Roller Plus ensures time and costs saving.

Both Roller slip ring and the rotating Roller Plus electrical joint make servicing easier by accessing the brushes without removal of the slip ring from the machinery.

- High rotation speed
- Air passage internally designed
- Easy angular sensor
- Easy wiring and maintenance
- High number of electric passages
- Aluminium housing

Dimensions

 ϵ

Housing	in aluminium
Positioning	on vertical axis, with cover assembly on top
Protection degree	IP65
Operating temperature	-20°C ÷ +60°C
Max rotating speed	100 RPM
Standard connections	rings with 2m cable, brushes with numbered terminal board
Number of circuits	up to 36 connections
Nominal current	Ith 10A
Nominal voltage	400 Vac-dc
Test voltage	2 kV
Insulation resistant	$>$ 200 M Ω at 500 Vac-dc

Customisation

Cables (length / type)

Cables inlets (number / type / position)

Complete wiring I/O

Air passages (up to 5)

Rotary sensor / encoder

Mounting flanges

Flat bottom

Anti-condensation system

Fluidic joint

Combined solutions

Power

Signals

Data

Fluidic (air / oil)

Standard models

Only electrical passages			
	Code	number of circuits	H = [mm]
	GPRNA16	16x10A	177
	GPRNA20	20x10A	177
	GPRNA26	26x10A	198
	GPRNA30	30x10A	240
	GPRNA36	36x10A	240

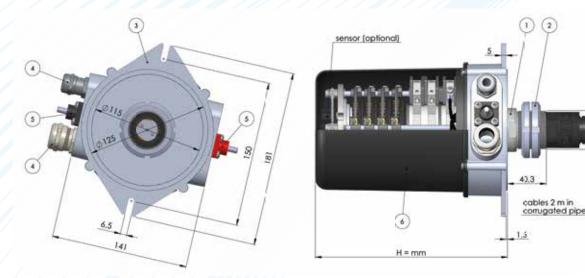
Electrical passages + 1 air passage

Code	number of circuits	H = [mm]
GPRNA16K3F1	16x10A + 1x1/4"-10bar	177
GPRNA20K3F1	20x10A + 1x1/4"-10bar	198
GPRNA26K3F1	26x10A + 1x1/4"-10bar	240
GPRNA30K3F1	30x10A + 1x1/4"-10bar	240

- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

PMR Premium

Suitable for


Ravioli PMR Premium slip ring has reduced dimensions and high-power supply which make it perfect for applications on small rotating auto-cranes and rotating earth-moving machines.

With its special design and reduced diameter, this slip ring aligns high versatility of brushes and rings to the operator's needs, ensuring mechanical endurance and high protection degree. Brushes are also easy to replace without removing the slip ring from the machinery.

The PMR Premium is equipped with cable entries of different sections suitable for all cables and can be customised with Ethernet, PROFI-BUS and CAN-BUS, Touch System Brushes, encoders and sensors, auxiliary contacts for coupling to fluidic joints.

- Mixed versions with rings and brushes up to 100A
- ⇒ High protection degree IP65
- → Touch System Brushes to grant a better contact continuity
- Optional accessories available
- Aluminium housing
- Sensors available on request

Dimensions

CE

Housing	in aluminium
Positioning	on vertical axis, with cover assembly on top
Protection degree	IP65
Operating temperature	-20°C ÷ +60°C
Max rotating speed	20 RPM
Standard connections	rings with 2m cable, brushes with numbered terminal board
Number of circuits	up to 34 connections
Nominal current	Ith 10A/100A
Nominal voltage	50 Vac-dc
Test voltage	500 V
Insulation resistant	>200 M Ω at 500 Vac-dc

Customisation

Cables (length / type)

Cables inlets (number / type / position)

Complete wiring I/O

Air passages (up to 5)

Rotary sensor / encoder

Mounting flanges

Flat bottom

Version with contacts for data only or up to 10A

Fluidic joint

Combined solutions

Power

Signals

Data

Fluidic (air / oil)

Standard models

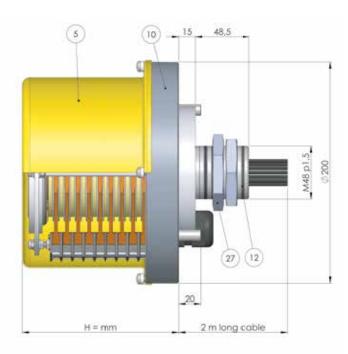
C	only electrical passages	
Code	number of circuits	H = [mm]
GPMRV2T14	2x100A + 14x10A	177
GPMRV2T20	2x100A + 20x10A	198
GPMRV2T32	2x100A + 32x10A	240

- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

PMS

Suitable for


Manufactured with aluminium cover and bottom, PMS slip ring by Ravioli is designed to ensure strong mechanical endurance and high protection degree. Thanks to small dimensions and reduced height with a small distance between the rings of 5 mm only, this device is perfect in outdoor applications.


This slip ring is available in a choice of copper-graphite or silver-graphite brushes for the transmission of signals, along with executions ranging from 6 to 30 rings on 20 and 50A, with IP55 protection.

This model can also be supplied with one or more fluidic passages or angular sensors for applications requiring these features on request.

- Reduced height of the device
- Mixed versions with 20A and 50A rings
- ⇒ Protection degree IP55
- Sensors and air passages available on request

Dimensions

 ϵ

Housing	in aluminium
Positioning	on vertical axis, with cover assembly on top
Protection degree	IP55
Operating temperature	-20°C ÷ +60°C
Max rotating speed	30 RPM
Standard connections	rings with 2m cable, brushes with numbered terminal board
Number of circuits	up to 30 connections
Nominal current	Ith 20A/50A
Nominal voltage	660 Vac-dc
Test voltage	2,5 kV
Insulation resistant	>200 MΩ at 500 Vac-dc

Customisation

Cables (length / type)

Cables inlets (number / type / position)

Air passages (up to 5)

"Long Life" version

Rotary sensor / encoder

Complete wiring I/O

Mounting flanges

Flat bottom

Anti-condensation system

Fluidic joint

Micro-switches application

Combined solutions

Power

Signals

Data

Fluidic (air / oil)

Standard models

Only	alactrical	nassages

Code	number of circuits	H = [mm
GPMSB6	6x20A	91
GPMSB10	10x20A	91
GPMSB16	16x20A	141
GPMSB20	20x20A	141
GPMSB26	26x20A	192
GPMSB30	30x20A	192

Electrical passages + 1 air passage

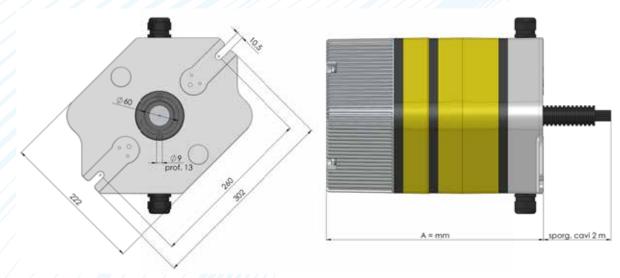
Code	number of circuits	H = [mm]
GPMSB6K3F1	6x20A + 1x1/4"-10bar	91
GPMSB10K3F1	10x20A + 1x1/4"-10bar	141
GPM B16K3F1	16x20A + 1x1/4"-10bar	141
GPMSB20K3F1	20x20A + 1x1/4"-10bar	192
GPMSB26K3F1	26x20A + 1x1/4"-10bar	192
GPMSB30K3F1	30x20A + 1x1/4"-10bar	252
GPMSB6K3F2	6x20A + 1x3/8"-10bar	141
GPMSB10K3F2	10x20A + 1x3/8"-10bar	141
GPMSB16 K3F2	16x20A + 1x3/8"-10bar	192
GPMSB20K3F2	20x20A + 1x3/8"-10bar	192
GPMSB26K3F2	26x20A + 1x3/8"-10bar	252
GPMSB30K3F2	30x20A + 1x3/8"-10bar	252

- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

PME Evolution

Suitable for

Designed for tough working conditions, Ravioli's PME Evolution slip rings are fitted with aluminium bottom and cover along with special thermoplastic material insulating its central core.


This mix combines flexibility of versions in limited height dimensions with high resistance to mechanical stress, protection degree and high working current.

Copper-graphite, silver-graphite or touch system contact brushes for signals are also available in executions ranging from 6 up to 60 rings on 20/50/100A with IP65 protection.

Ravioli's PME slip ring can be optionally fitted with encoders and sensors, including angular sensors as well.

- Modular versions
- Touch System Brushes
- ⇒ High protection degree IP65
- Mixed versions with 20A, 50A, 100A rings
- Optional accessories available

Dimensions

Housing	in aluminium with insulating thermoplastic bands
Positioning	on vertical axis, with cover assembly on top
Protection degree	IP65
Operating temperature	-20°C ÷ +60°C
Max rotating speed	30 RPM
Standard connections	rings with 2m cable, brushes with numbered terminal board
Number of circuits	from 20 to 60 rings 20A - mixed executions 20/50/100A
Nominal current	Ith 20A/50A/100A
Nominal voltage	660 Vac-dc
Test voltage	2,5 kV
Insulation resistant	>200 MΩ at 500 Vac-dc

Customisation

Cables (length / type)

Cables inlets (number / type / position)

Air passages (up to 5)

"Long Life" brushes

Rotary sensor / encoder

Complete wiring I/O

Mounting flanges

M48 threaded tube for fixing

Anti-condensation system

Fluidic joint

Micro-switches application

Combined solutions

Power

Signals

Data

Fluidic (air / oil)

Standard models

\cap nh	, plactric	al passages
OHIII	/ ((((()	.ai Dassaets

	, ,	
Code	number of circuits	H = [mm]
GPMEB20	20x20A	175
GPMEB30	30x20A	229
GPMEB40	40x20A	283
GPMEB50	50x20A	337
GPMEB60	60x20A	391

Electrical passages + 1 air passage

All the version listed here on the left can be additionally fitted with an extra 1/4", 3/8", or 1/2" internal air passage at 10 bar.

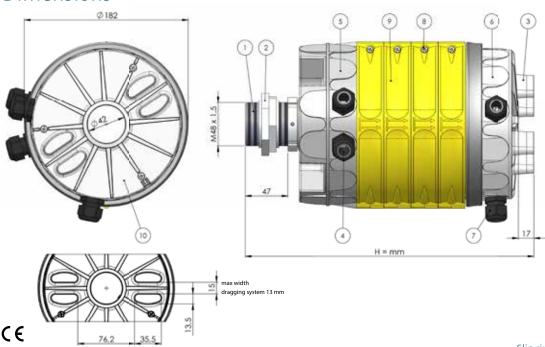
- Customised models on request
- Installation, wiring, maintenance, instructions and spare parts list available on request

PRE Smart

Suitable for

The PRE Smart slip ring is Ravioli's latest breakthrough.

With innovative design, the new PRE Smart offers easy access to its mechanics by opening a section of the external case, reducing servicing and downtimes by periodic checks.


Detail innovation and standard or customised versions make Ravioli PRE slip ring suitable for all applications requiring high mechanical endurance and protection degree.

Fitted with a open internal hole for liquid tubes, shafts or wires, the PRE Smart is available in modular executions ranging from 20A, 30A to 50A and mixed versions up to 50A for signal transmission.

Customised versions with more radial or axial cable entries, signal executions with silver-graphite or "Long Life" brushes are also supplied.

- "Long Life" executions
- Access to the lateral section of the case
- Reduced height dimensions
- Free internal hole
- ⇒ Brushes 20/30/50A

Dimensions

Housing	In thermoplastic insulating material
Positioning	Vertical axis with threaded pipe down
Inside passage	42 mm free diameter through steel pipe
Protection degree	IP52
Operating temperature	-20°C ÷ +60°C
Max rotating speed	30 RPM
Standard connections	rings and brushes with numbered terminal board
Number of circuits	up to 40 for 20A - up to 24 for 30A mixed executions 20/30/50A
Nominal current	Ith 20A/30A/50A
Nominal voltage	660 Vac-dc
Test voltage	2,5 kV

Customisation

"Long Life" brushes
Cables inlets (number / type / position)
Cables (length / type)
Mounting flanges

Combined solutions

Power
Auxiliary
Signals
Data

Standard models

	20A Type			30A Type	
Code	number of circuits	H = [mm]	Code	number of circuits	H = [mm]
GPRE2B4	4x20A	230	GPRE1C4	4x30A	260
GPRE2B8	8x20A	260	GPRE1C6	6x30A	290
GPRE2B12	12x20A	290	GPRE1C8	8x30A	320
GPRE2B16	16x20A	320	GPRE1C10	10x30A	350
GPRE2B20	20x20A	350	GPRE1C12	12x30A	380
GPRE2B24	24x20A	380	GPRE1C14	14x30A	410
GPRE2B28	28x20A	410	GPRE1C16	16x30A	440
GPRE2B32	32x20A	440	GPRE1C18	18x30A	470
GPRE2B36	36x20A	470	GPRE1C20	20x30A	500
GPRE2B40	40x20A	500	GPRE1C22	22x30A	530
			GPRE1C24	24x30A	560

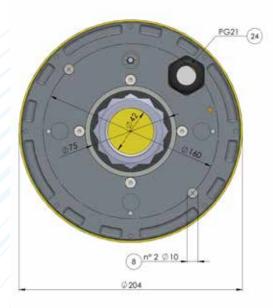
	50A Type		
Code	number of circuits	H = [mm]	
GPRE1D4	4x50A	290	
GPRE1D8	8x50A	380	
GPRE1D12	12x50A	440	

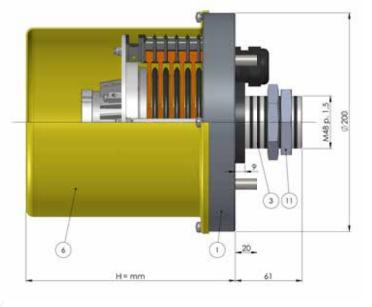
- Customised models on request
- Installation, wiring, maintenance, instructions and spare parts list available on request

PRS

Suitable for

The Ravioli PRS slip ring is realized with aluminium cover and bottom to ensure strong mechanical resistance and high protection degree.


Blade or copper-graphite or silver-graphite brushes for the transmission of signals are also supplied with the PRS slip ring when needed.


The PRS can be supplied with executions ranging from 4 to 21 rings 20/30/50A and mixed versions, with IP55 protection. An electrical terminal block is positioned inside the manifold to facilitate wiring by the operator.

The Ravioli PRS slip ring is recommended for outdoor applications with limited numbers of rings. Customised versions are possible with feasibility studies by our technical department.

- Modular version
- ⇒ Brushes 20/30/50A and for signals
- Internal terminal box for rings connection

Dimensions

Housing	in aluminium
Positioning	Vertical axis with threaded pipe down
Protection degree	IP55
Operating temperature	-20°C ÷ +60°C
Max rotating speed	30 RPM
Standard connections	rings and brushes with numbered terminal board
Number of circuits	up to 21 for 20A up to 14 for 30A mixed executions 20/30/50A
Nominal current	Ith 20A/30A/50A
Nominal voltage	660 Vac-dc
Test voltage	2,5 kV

Customisation

"Long Life" brushes

Cables inlets (number / type / position)

Mounting flanges

Combined solutions

Power Auxiliary Signals Data

Standard models

	20A Type			30A Type			50A Type	
Code	number of circuits	H = [mm]	Code	number of circuits	H = [mm]	Code	number of circuits	H = [mm]
GPRSB6	6x20A	192	GPRSC4	4x30A	192	GPRSD4	4x50A	192
GPRSB9	9x20A	192	GPRSC6	6x30A	192	GPRSD6	6x50A	252
GPRSB12	12x20A	252	GPRSC8	8x30A	252	GPRSD8	8x50A	312
GPRSB15	15x20A	252	GPRSC10	10x30A	252	GPRSD10	10x50A	312
GPRSB18	18x20A	312	GPRSC12	12x30A	312			
GPRSB21	21x20A	312	GPRSC14	14x30A	312			

- Customised models on request
- Installation, wiring, maintenance, instructions and spare parts list available on request

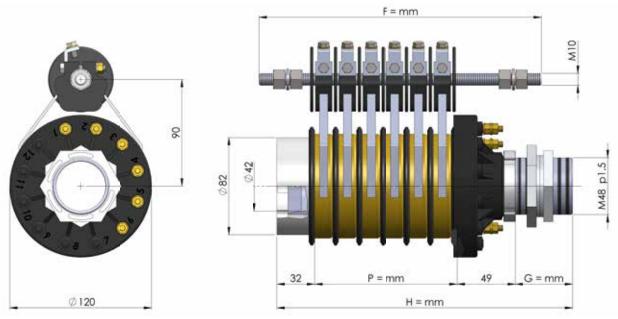
PRG

Suitable for

Water treatment plants

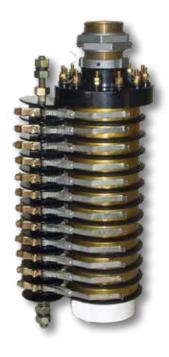
Ravioli PRG slip ring is supplied without housing and is available in different versions and executions with diameter ranging from 90mm to 350mm.

This feature of the PRG slip ring makes a wide internal inlet possible and available along with nominal voltages ranging from few tens to some hundreds A.


The PRG slip ring can be either supplied with blade or copper-graphite or silver-graphite brushes for the transmission of signals, with possible executions ranging from 4 up to 16 rings at 50/200A.

Ravioli PRG slip ring is suitable for applications where high current and optional central passages for tubes, wires or metallic shafts are required.

Customised versions are possible thanks with feasibility studies by our technical department.


Free internal hole

Dimensions

 ϵ

without housing
vertical axis
42 mm free diameter through steel pipe
IP 00
-20°C ÷ +60°C
30 RPM
rings and brushes with numbered terminal board
up to 16 for 50A
Ith 50A
660 Vac-dc
2.5 kV

Standard models

50A Type

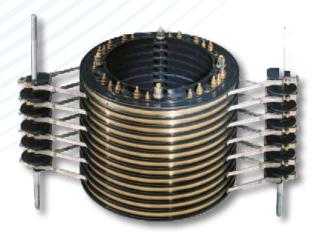
number of circuits	H = [mm]	F = [mm]	G = [mm]	P = [mm]
4x50A	210	189	49	80
6x50A	250	235	49	120
8x50A	280	281	39	160
10x50A	330	304	49	200
12x50A	370	350	49	240
14×50A	400	396	39	280
16x50A	450	442	49	320
	circuits 4x50A 6x50A 8x50A 10x50A 12x50A 14x50A	circuits H = [mm] 4x50A 210 6x50A 250 8x50A 280 10x50A 330 12x50A 370 14x50A 400	circuits H = [mm] F = [mm] 4x50A 210 189 6x50A 250 235 8x50A 280 281 10x50A 330 304 12x50A 370 350 14x50A 400 396	circuits H = [mm] F = [mm] G = [mm] 4x50A 210 189 49 6x50A 250 235 49 8x50A 280 281 39 10x50A 330 304 49 12x50A 370 350 49 14x50A 400 396 39

Suitable for

Ravioli PZG slip ring models are supplied without external housing.

These PZG slip rings combine the possibility of an optional internal passage for tubes, wires or mechanic shafts thanks to their limited axial dimensions, guaranteeing at the same time a wide range of supported voltages.

The PZG slip ring of Ravioli is supplied with either blade or copper-graphite or silver-graphite brushes for the transmission of signals and the possible executions of this slip ring range from 4 to 26 rings at 50A.


Ravioli PZG slip ring is suitable for applications that require a large internal passage on machinery with limited height dimensions.

- Wide internal passage
- Connections for rings directly on the terminal box

Dimensions H = mm

 $C \in$

Housing	without housing
Positioning	vertical axis
Inside passage	diameter 196 mm free suitable for big pipe mounting
Protection degree	IP 00
Operating temperature	-20°C ÷ +60°C
Max rotating speed	30 RPM
Standard connections	rings and brushes with numbered terminal board
Number of circuits	up to 26 for 50A
Nominal current	Ith 50A
Nominal voltage	660 Vac-dc
Test voltage	2,5 kV

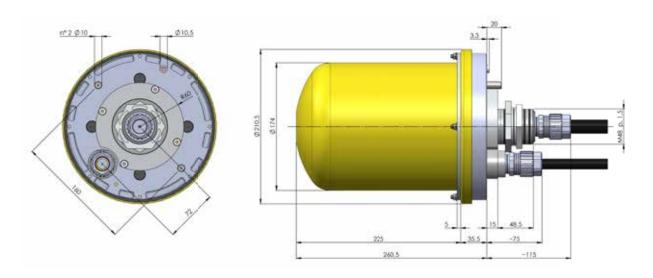
Standard models

50A Type				
Code	number of circuits	H = [mm]	F = [mm]	
GPZGD4	4x50A	192	143	
GPZGD6	6x50A	223	189	
GPZGD8	8x50A	254	212	
GPZGD10	10x50A	285	235	
GPZGD12	12x50A	316	281	
GPZGD14	14x50A	347	304	
GPZGD16	16x50A	378	327	
GPZGD18	18x50A	409	373	
GPZGD20	20x50A	440	396	
GPZGD22	22x50A	471	419	
GPZGD24	24x50A	502	465	
GPZGD26	26x50A	533	488	

- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

Suitable for

Ravioli EXD slip rings are Atex approved for Zone 21 and 22, making them suitable for potentially explosive dusted environments.


Reinforced by an aluminium housing, these slip rings guarantee high mechanical resistance and IP65 protection degree.

Ravioli EXD range may be supplied in different executions: single 7A, 16A, or 34A or 42A sets or mixed executions with combination of ring sets spanning over 2A, 4A, 7A, 16A, 34A or 42A. Rings and brushes are supplied wired with 2m long cable.

A wide customised range of EXD slip rings, manufactured according to the client's special requests, is also available to meet extended market and special application requirements.

- → Atex Certification II 2 D Ex tb IIIC T70°C or T75°C Db IP65
 for dusted areas Zone 21 and 22
- ⇒ High protection degree IP65
- Rings and brushes wired with 2m long cable
- Rings and brushes for signals, anti-condensation heater

Dimensions

Housing	in aluminium		
Positioning	on vertical axis, with cover assembly on top		
Protection degree	IP65		
Operating temperature	T70° C = - 20° C + 40° C T75° C = - 20° C + 50° C		
Max rotating speed	50 RPM		
Standard connections	rings with 2m cable brushes with 2m cable		
Number of circuits	up to 22 connections		
Nominal current	Ith 2A/4A/7A/16A/34A/42A		
Nominal voltage	440 Vac-dc		
Test voltage	2,5 kV for 1 min.		
Insulation resistant	>100 MΩ at 500 Vac-dc		

Customisation

Cables (length / type)
Condensation heater (on demand)

Combined solutions

Power Signals Data

Standard models

Sin	gle Composition	IS
Code	number of circuits	H = [mm]
GEXDB4	4x7A+PTC	260,5
GEXDB6N	6x7A	260,5
GEXDB10	10x7A+PTC	260,5
GEXDB12N	12x7A	260,5
GEXDB20	20x7A+PTC	260,5
GEXDB22N	22x7A	260,5
GEXDC10N	10x16A	260,5
GEXDD4	4x34A+PTC	260,5
GEXDD4N	4x34A	260,5
GEXDE4	4x42A+PTC	260,5
GEXDE4N	4x42A	260,5

Mixed Compositions

Code	ode number of circuits		
GEXDC4A16N	4x16A + 16x4A	260,5	
GEXDC4B2N	4x16A + 2x7A	260,5	
GEXDC4B4	4x16A + 4x7A+PTC	260,5	
GEXDC4B6N	4x16A + 6x7A	260,5	
GEXDC4B8	4x16A + 8x7A+PTC	260,5	
GEXDC4B10N	4x16A + 10x7A	260,5	
GEXDC8A6	8x16A + 6x4A+PTC	260,5	
GEXDC8A8N	8x16A + 8x4A	260,5	
GEXDC8B4N	8x16A + 4x7A	260,5	
GEXDD4A6N	4x34A + 6x4A	260,5	
GEXDD4B2N	4x34A + 2x7A	260,5	
GEXDD4B4N	4x34A + 4x7A	260,5	
GEXDE4A2	4x42A + 2x4A+PTC	260,5	
GEXDE4A2N	4x42A + 2x4A	260,5	
GEXDE4A4N	4x42A + 4x4A	260,5	
GEXDE4S7	4x42A + 7x2A+PTC	260,5	
GEXDE4S9N	4x42A + 9x2A	260,5	

- Customised models on request
- ⇒ Installation, wiring, maintenance, instructions and spare parts list available on request

Let's get into details

Did you find a suitable solution among our slip rings listed in this catalogue?

If so, please, contact us and let us know which family or product suits you best, according to both your application field and machinery.

You can email us at product@raviolispa.com or call us at +39 02 53 63 01

Let's design your own Slip Ring

Looking for a customised solution or just want to double-check what product among our complete range of slip rings most suits your need?

Company n	ame	Contact person						
Phone		e-mail						
			Enviroment Featl	JRES				
Application	field							
Position	Position							
Environmer	Environment 🗆 indoor 🗆 outdoor Temperature (°C) min max Std							
Environmer	nt conditions Ex.: damp, du	st aggressive atmosn	herical agents etc					
	otection degree: IP _							
			Electric Featuri	ES				
Type of use				2				
N° of rings	I, Nominal Current (A)	V _n Nominal Voltage (V)	Frequency (Hz)	Power	Auxiliary	Signal	Other	Specify
	In the state of th	10.0086 (1)				□ □		эрссу
Operation								
Current flow □ only at motionless slip ring □ only during slip ring rotation □ both								
Max dimen	sions Diameter (mm)	Heig	MECHANICAL FEATL					
Max dimensions Diameter (mm) Height (mm) Rotation speed (RPM) Rotating elements □ brushes □ rings								
Passage hole □ no □ yes If yes, max required diameter (mm)								
Wiring								
Is wiring required? □ no □ yes If yes, where? □ brushes □ rings Cables protrusion (m)								
Notes								

Please fill out the form, giving us as many details as you can, and send a picture of this page by scanning this QR code.

Our team will be happy to find out the perfect product for you, or study a customised solution based on your requirements.

More solutions by Ravioli

Along with slip rings, Ravioli S.p.A. manufactures a wide range of either standard or customised products: rotary limit switches, pendant stations, and radio remote controls for the lifting industry; twin connectors and DC contactors for traction batteries.

Slip Rings

Radio Remote Controls

Rotary Limit Switches

Twin Connectors

Pendant Stations

DC Contactors

Thank you for your attention Visit our website by scanning the QR code

